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Abstract. The rapid growth on the adoption of smart grids technologies is ena-
bling the improvement of efficiency, reliability and security on energy distribu-
tion and consumption. The efficiency increase comes from the overall monitor-
ing of the electricity network, and from the capability of acting upon loads in 
order to better adapt to overall and local energy production from traditional 
sources and renewables. To guarantee that these energy sources can be effec-
tively used, smart grid systems must be able to react quickly and predictably, 
adapting to changing supply, by controlling loads and energy storage. Many ap-
plications have been identified and developed to optimize power grid systems, 
and these applications rely on a solid communications network that is secure, 
highly scalable, and always available. Thus, any communication infrastructure 
for smart grids should support its potential of producing high quantities of real-
time data, with the goal of reacting to state changes by actuating on devices in 
real-time, while providing Quality of Service (QoS) guarantees to the commu-
nications. These functionalities can be supported by a Message-Oriented Mid-
dleware, which allows interconnecting houses and controlling applications in a 
distributed environment. Therefore, in this paper we survey and analyze exist-
ing middleware solutions for the support of distributed scalable large-scale ap-
plications with QoS requirements that are structured on top of a Message ori-
ented Middleware. 

1 Introduction  

The rapid growth on the adoption of smart grids technologies is enabling the im-
provement of efficiency, reliability and security on energy distribution and consump-
tion. The efficiency increase comes from the overall monitoring of the electricity 
network, the capability of acting upon loads in order to better adapt to overall and 
local energy production from traditional and renewable sources. The increase in relia-
bility and security arises from the capability of real-time monitoring and actuations 
over the network. 
An intrinsic problem of this scenario is that energy produced from renewable sources 
is affected by fluctuating weather factors. To guarantee that these energy sources can 



be effectively used, smart grid systems must be able to react quickly to changing sup-
ply, by controlling power loads and energy storage.  
In smart grid systems, distributed applications need to interact with each other to ex-
change data among different platforms with different types of information systems. 
The management of these systems is an important aspect especially with the increas-
ing number of users, applications, services and information sources. 
Many applications have been identified and developed to optimize power grid sys-
tems. Typically, these applications interact with each other and with the surrounding 
environment, composed by the energy-consuming appliances of the Home Area Net-
work (HAN), the energy-producing devices that harvest energy from renewable 
sources with an efficiency that depends on many unpredictable factors, and the energy 
market that enables the user to buy and sell energy to reach an equilibrium that can 
power appliances with minimal energy waste. The changes in the environment can 
happen at a high rate, and some of the events are more important than others, hence 
these applications rely on a reliable communications network equipped with QoS 
characteristics, like security, scalability, real-time operation and high availability. 
Such a communication network must support the smart grid potential of producing 
high quantities of real-time data, and actuating on devices in real-time [2].  
The European ENCOURAGE [21] project, which is the driving force behind this 
work, addresses the development of adequate technologies for the optimization of 
energy consumption and production in buildings and houses. The ENCOURAGE 
platform will be capable of handling thousands of homes, each with tens of devices 
that can be controlled cooperatively. These devices range from appliances whose 
loads are controlled by simple on/off switches, to sophisticated energy producing 
equipment. In such a system communications can be structured upon a Message Ori-
ented Middleware, which facilitates the integration of highly heterogeneous systems, 
e.g., connecting home gateways to higher level applications. The main idea behind its 
use is to simplify distributing applications across heterogeneous operating systems, 
programming language, computer architectures, networking protocols, and at the 
same time reducing the complexity on the interconnection functionalities and provid-
ing a high level of scalability. In our work, we want to base this layer on a Message 
Oriented Middleware (MOM) [19]. Examples of such technologies are RabbitMQ [4], 
Data Distribution Service (DDS) [6] and the Extensible Messaging and Presence Pro-
tocol (XMPP) [5].   
In this paper we provide a survey of existing Middleware solutions for the support of 
such systems in Section 2; Section 3 surveys some relevant MOM solutions which 
can support the requirements of smart grid applications; the QoS support offered by 
the MOM solutions are surveyed in Section 3 and are evaluated in Section 4; finally, 
in section 5 we draw some conclusions on the topic at hand. 

2 Middleware Solutions  

Developing distributed applications and embedded systems is a complex task due to 
the heterogeneity of the applications, operating systems and programming languages 



that must be orchestrated together. Additionally, the response to the dynamic changes 
such as hardware failure, dynamic network environment, and security attacks are hard 
to accomplish without the right tools and techniques [8]. Moreover, in complex dis-
tributed application such as smart grids, there are several functional modules, such as 
Geographical Information System (GIS), billing and metering systems, all of which 
need to exchange data between each other in real-time. To ease the development of 
complex applications, their communications are usually supported by a middleware 
layer. Fig. 1 illustrates how a middleware layer simplifies the transition from a com-
munication paradigm based on direct application-to-application connections, to one 
based on a middleware communication bus. The approach based on direct interaction 
between components of the architecture leads to a large number of use cases and huge 
complexity of the system. Moreover, direct communication puts into the picture many 
specifications, some of which are work in progress by normalization bodies. Apart 
from fighting the resulting high complexity of such a system by using a lower number 
of standards in the middleware, Figure 1 makes it explicit that by the use of middle-
ware services applications do not need to know each other’s address and/or identity. 
With a middleware communication bus, applications send their messages to the mid-
dleware, which then distribute the messages between consuming applications. Fur-
thermore, and also very important, the middleware concurs to the adoption of a same 
communication protocol for the application, further easing the communication activi-
ties. 

 
Fig. 1. Overview of present integration and standard based integration  

A middleware can also provide some degrees of abstraction from the complexity and 
heterogeneity of the underlying communication networks, operating systems, pro-
gramming languages and management of distributed applications, by providing an 
API that encapsulates the access to the underlying mechanisms.  
In this section we briefly review the main characteristics of different categories of 
middleware and identify the reasons why Message Oriented Middleware (MOM) is 
the most adequate category to support smart grid applications.  



2.1 Middleware Technologies 

Middleware for distributed systems can be classified into four main categories: Re-
mote Procedure Call (RPC), Transaction-Oriented Middleware (TOM), Object Ori-
ented/Component middleware (OOCM) and Message Oriented Middleware (MOM). 
Fig. 2 displays these categories. 
A Remote Procedure Call (RPC) middleware provides functionalities and infrastruc-
ture to call procedures on remote systems. It allows a computer program to run code 
on a remote machine without having to worry about the communication details be-
tween them. Any API call that involves RPC interface is synchronous to the user, 
since it waits until the server returns a response; even if it is possible to encapsulate 
the API call in a multi-threaded workflow to asynchronies it, the resulting system 
would be not scalable and with a low fault-tolerance capability [9]. The RPC model is 
particularly adequate for distributed systems based on client-server model. 
A Transaction-Oriented Middleware (TOM) is used to ensure the correctness of trans-
action operations in a distributed environment. It is primarily used in architectures 
where the main components are database applications [15]. TOM supports synchro-
nous and asynchronous communication among heterogeneous hosts, and it eases inte-
gration between servers and database management systems. Transactional middleware 
experiences a number of disadvantages such as significant overhead in managing the 
transactions, and, according to [10] the QoS guarantees they provide are often unnec-
essary or undesirable for most applications. 
An Object-Oriented/Component Middleware (OOCM) is based on object-oriented 
programming models and supports distributed object request. OOCM is an extension 
of Remote Procedure Calls (RPC), and it adds several features that emerge from ob-
ject-oriented programming languages, such as object references, inheritance and ex-
ceptions. These added features make OCMM flexible and very powerful [16]. Object-
oriented middleware has synchronous requests as its default form of interaction, how-
ever many systems include support for asynchronous communications as well. One of 
the main disadvantages of object-oriented middleware is the limited scalability [11].   

 
Fig. 2. Categories of Middleware 



2.2 Message Oriented Middleware 

A Message Oriented Middleware (MOM) is a family of software that allows message 
passing across applications on distributed systems. This is a large category that in-
cludes message passing, message queuing and message publish/subscribe. A MOM 
provides several features such as: i) asynchronous and synchronous communication 
mechanisms; ii) data format transformation (i.e. a MOM can change the format of the 
data contained in the messages to fit the receiving application [12]); iii) loose cou-
pling among applications; iv) parallel processing of messages; v) several levels of 
Quality of Service support.  
A MOM usually supports one or more among three different communication para-
digms: i) message passing (direct communication between applications); ii) message 
queuing (indirect communication via a queue); iii) Publish/Subscribe mediated inter-
action, where messages are published to “topics” and then subscribers receive all 
messages published to the topics they subscribed to. 
For the particular requirements of smart grid applications, as it will be seen in the rest 
of this section, the most interesting communication paradigm is the one supported by 
Publish Subscribe Message Oriented Middleware (PSMOM), which provides asyn-
chronous and highly scalable many-to-many communication model [13]. In this 
scheme, senders and receivers of messages interact through an intermediary, the 
PSMOM. The sender of the message, called publisher, is not aware of the identity of 
recipients (subscribers), and it publishes its messages to the PSMOM. Subscribers are 
enabled to receive the messages from the PSMOM by performing subscriptions of the 
information they are interested in.  
The publish/subscribe scheme provides systems decoupled in terms of space, time and 
synchronization. Space decoupling means that publisher and subscriber do not need to 
be aware of each other’s location or identities. Time decoupling means that publisher 
and subscriber do not need to be online and actively collaborating in the interaction at 
the same time. Synchronization decoupling allows asynchronous notification of sub-
scribers by using event services callbacks.  
The filtering of messages for subscribers can be based on two approaches: topic-based 
and content-based [13]. In a topic-based scheme, publisher labels each message as 
pertaining to a certain topic, and then the messages are published as part of the topics. 
Subscribers will receive all the messages published to the topics they are interested in, 
and to which they have subscribed to. In content-based scheme, messages are sent to a 
subscriber based on the content of those messages; hence it represents an automatic 
labeling system. Subscribers will receive all the messages that match the constraints 
defined by them.    
Fig. 3 shows four applications that connect to a MOM broker. The Publisher applica-
tion sends messages to Topic 1 and Topic 2. The topics operate as relaying systems, 
forwarding these messages only to subscribers based on their subscriptions interests. 
In this case, Subscriber A subscribes to Topic 1, Subscriber B subscribes to Topic 1 
and Topic 2, and Subscriber C subscribes to topic 2. 



 
Fig. 3. Subscription to topics controls the message types that reach each subscriber 

3 Message-Oriented Middleware Technologies 

This section presents three MOM systems that can be considered placeholders for the 
categories under which current solutions on the market fall. Moreover, we believe that 
the solutions we present are the best representatives for the categories at hand, since 
they are the most mature implementation of their approaches. 

3.1 Data Distribution Service (DDS).  

The Data Distribution Service for Real-Time Systems (DDS) standard has been de-
fined by the OMG organization. DDS has been designed with an emphasis on high-
performance and predictability, but also to be very efficient on the use of resources. 
High performance is ensured by a lightweight architecture, predictability is ensured 
by its capabilities to reserve resources by enforcing QoS on the communications.  
DDS is based on the Data Centric Publish-Subscribe (DCPS) model, which bases its 
operation on a global access space that is reachable by distributed nodes. Publishers 
are applications that write information to the data space, while consumers are applica-
tions that are able to read on the data space. Consumers are registered on the middle-
ware, thus when data is created or modified by the publishers, DDS takes care of 
propagating the related changes to the data to all subscribers.  
DDS uses a data model based on specific structures, which are identified by a topic 
and a type. The topic provides an identifier that uniquely identifies a data item within 
the global data space. The type provides structural information, needed to inform the 
middleware on how to manipulate the data and also allows the middleware to provide 
type safety. This feature is particularly important since it is responsible for the DDS 
high performance level. 



DDS provides a set of complex QoS policies that provide guaranteed data delivery, 
real-time performance, bandwidth, redundancy and data persistence. DDS is a stand-
ard for both Application Programming Interface (API) and Wire Protocol, since it 
defines the binary encoding for both protocol messages and data-payload.  
DDS targets high performance systems, providing  high throughputs, very low laten-
cies and real-time determinism, as proven by the results in [3]. DDS provides data 
structural message persistence, meaning that if an application reboots it will receive 
all the data changes to the data it subscribed to, which causes less traffic than receiv-
ing all the messages that changed the data over time. DDS is meant to be highly scal-
able, since the DDS server can extend over several computers. Moreover, DDS offers 
QoS policies to prioritize messages, and to guarantee QoS properties in the communi-
cation (bandwidth usage, delivery semantics, etc).  

3.2 Extensible Messaging and Presence Protocol (XMPP).  

The Extensible Messaging and Presence Protocol (XMPP) is an open eXtensible 
Markup Language (XML) protocol specified by the Internet Engineering Task Force 
(IETF) for near-real-time messaging, presence, and request-response services [5]. 
This technology was originally developed for instant messaging applications, and it 
has been extended to support other application domains, like voice and video commu-
nications. But in fact, it can serve the purpose of delivering data items from a large 
number of connected devices to higher level applications, being, at the same time, 
scalable and easy to implement. XMPP includes functionalities for XML streaming, 
encryption using Transport Layer Security (TLS), authentication based on the Simple 
Authentication and Security Layer (SASL), unicode support, and information about 
publishers’ or subscribers’ presence in the network.  
XMPP technology is based on the client/server paradigm where clients are intercon-
nected through servers. Therefore, when two applications want to communicate, they 
connect to a XMPP server and start exchanging XMPP messages, which are always 
routed through the servers. Such kind of communications can be encrypted and the 
clients are also able to run an authentication protocol to connect with the server(s). 
The XMMP clients are identified by a unique identifier called Jabber Identification 
(JID). XMPP servers are also capable of connecting between each other for scalability 
proposes. 
XMPP specifies three different communication snippets called XML stanzas: mes-
sage, presence, and iq (Info/Query). The message stanza is a method sent from one 
entity to another for negotiating an XML stream. 
In this protocol, all messages are encoded using the XML format. In addition to the 
basic functionalities, XMPP also defines protocols for multi-user chat, pub-
lish/subscribe, HTTP bindings and other. In contrast to DDS, XMPP is considered to 
be a standard only for Wire protocol, i.e. XMPP is agnostic in relation to the data 
being transferred.  



3.3 AMQP (RabbitMQ) 

RabbitMQ is an open source messaging broker based on the Advance Messaging 
Queue Protocol (AMQP) standard [7], which has been written in Erlang. AMQP de-
fines both a wire protocol, and a protocol model that specifies the semantics for 
AMQP implementation: by abiding to these guidelines, AMQP implementations will 
be interoperable with other AMQP implementations. 
AMQP divides the brokering task between exchanges and message queues, where the 
first is basically similar to a router that accepts incoming messages, and, based on a 
set of rules or criteria, decides which queues to route the messages to. Note that this 
module does not store messages. A message queue stores messages and sends them to 
message consumers. 
This protocol clearly differentiates form the other ones due to the provision of the 
chain of responsibility pattern, where each processor acts on the message along the 
way, perhaps adding to it, modifying its form, rejecting it, or simply passing it 
through to the next processor. It basically enhances system flexibility by letting de-
velopers to separate and to combine orthogonal functionality as needed. Another se-
cond important aspect is that AMQP enables the broker to make routing decisions that 
are usually left to the application.  
The AMQP protocol defines the wire protocol, usually based on TCP/IP, where each 
frame contains a channel number. A last characteristic of AMQP is that it is a binary 
protocol, thus more efficient than text-based ones.    

4 QoS Support on Message Oriented Middlewares 

The capabilities of a MOM in relation to QoS play a critical role in the overall system 
performance, especially with the increasing demand from applications that require 
soft real-time publish/subscribe services. Applications within distributed systems are 
characterized by real-time information that flows from sensors to applications and 
from applications to actuators. Ensuring real-time data distribution is fundamental for 
maintaining the correctness and safety of such systems. In the remainder of this sec-
tion we analyze the support by MOM protocols described in Section 3, in relation to 4 
QoS metrics: latency/jitter, bandwidth, delivery semantics and message priority and 
ordering [14, 17]. 
Latency is defined as the travel time of a message from its source to its destination. A 
concept related to latency, and which constitutes an important metric for a distributed 
paradigm, is the jitter, which is a measure of the variability over time of the message 
latency; a system with high jitter can be considered as  unreliable. The end-to-end 
latency between two distributed applications depends on the number of broker hops in 
the path, the destination and source loads, the network protocol, and the network con-
dition. Furthermore, controlling jitter is important for real time systems.   
  
The latency and jitter can be explained from several aspects, network point of view, 
publisher point of view and subscriber point of view. As far as network is concerned, 
the latency regards the time that the message spends while being transported over the 



network. From the publisher side, the delivery time of these messages is critical since 
some messages are useful only for a certain amount of time, and after that they be-
come outdated. From the subscriber point of view, the metric is important when the 
subscriber needs to receive the messages from publishers within a certain time.  
There are several aspects that should be taken into account in publish/subscribe sys-
tems’ latency. First, the topology gives an assessment of how many brokers exist in 
the path between publisher and subscriber and what is the impact of the MOM layers 
in this delay. Second, the travel time among different hops can vary, depending on 
how the overlay network routes messages among nodes [18]. Third, the time message 
spends in each broker to be processed must be accounted, and that time depends on 
the broker’s load.  
The DDS protocol ensures very low message latency and more limited jitter by using 
fewer layers in comparison with other middleware technologies. DDS supports a 
number of QoS policies, like guarantees on the maximum latency for data delivery, 
latency budget, reliability of data delivery, priority of data delivery, and deadline 
policy; this set of QoS policies can reduce latency and jitter significantly. Latency-
budget policy defines the maximum acceptable delay from the time the data is written 
until the data is received by a subscriber application. Deadline policy specifies the 
maximum inter-arrival time between messages, and it defines the maximum duration 
that a “Data Reader” expects to elapse between the change of a value, and the update 
of the values contained in each subscriber’s instance.  
XMPP protocol basically is a best effort protocol with some Extensions Protocols 
(XEP), and supports some QoS functionalities. XEP-0203 handles deliveries in front 
of delay caused by a XML transfer. The protocol provides timestamp information 
regarding stored messages, which can be useful in case of later delivery, so that if a 
message is delayed, the original send time can be determined.  
RabbitMQ uses a method called "pre-fetch" to determine how many messages will be 
sent before the customer acknowledges a message. The objective is to send message 
data in advance, to reduce latency [7]. 
All of the three systems perform fine with respect of this metric. Anyway, DDS 
makes efforts to cope with jitter by enforcing reliability in the communication. 
Bandwidth: The overall bandwidth depends on the throughput of the broker and the 
size of each message. In this case publishers can identify the upper and lower bounds 
for the output stream and a subscriber can limit the maximum bandwidth used for 
receiving the messages. 
 DDS controls network bandwidth by using the time-based-filter policy, which de-
fines the minimum inter-arrival time between messages. Also, DDS uses the resource-
limit policy to control the amount of message buffering in the queues. Those policies 
lead to minimal waste of network bandwidth and potentially can provide  high 
throughputs [3]. The time-based filter policy allows handling different production and 
consumption rates without overflowing consumers. 
XMPP Extension Protocols defines an extension standard (XEP- 0138) for negotiat-
ing compression of XML streams. The protocol supports a wide range of compression 
algorithms. It can reduce bandwidth usage up to 90% [5]. Jingle RTP Sessions (XEP-
0167) protocol enables applications to communicate through negotiated sessions that 



use the Real-time Transport Protocol (RTP) to exchange voice or video data. This 
kind of QoS has implications on QoS guarantees on both latency and bandwidth. 
In the RabbitMQ implementation of AMQP, channels provide a way to multiplex one 
robust TCP/IP connection into several lightweight connections, making efficient use 
of the network port, and allowing the available bandwidth to be shared among concur-
rent activities. 
All of the systems are good candidates for smart grids with respect of this metric. 
Delivery semantics: Delivery semantics depend on two factors, network reliability 
and protection from duplicate messages. There are several levels of delivery seman-
tics: 

• Best effort: this is the lowest level of delivery guarantee, which mean that no 
reliability guarantee and messages can be duplicated. 

• At most once: delivery guarantee ensures that the subscriber receives at most 
one message of an event type instance. 

• At least once: the subscriber receives at least one message from a specific 
event type. 

• Exactly once: the subscriber receives a message from exactly one event type 
instance, and it receives each message only once. 

A scheme for reliable delivery of messages was proposed in [22]. This system con-
tains a repository node that manages a reliable-topic in a publish/subscribe paradigm. 
The repository node simplifies error corrections, retransmissions, failure recovery, 
and it handles reliable delivery from several publishers to several subscribers over its 
reliable-topics. Reliable delivery of the messages includes two main components. 
First, the system guarantees that messages originated from publisher to a reliable-
topic are stored exactly once in the middleware. Second, the middleware will guaran-
tee the reliable delivery of stored messages to the calculated destinations. 
DDS provides a reliability QoS policy that specifies two different data delivery guar-
antee modes. Those modes are “Reliable” and “Best Effort”. Reliable guarantees 
mean that all messages in a “Data Writer” history will be delivered to the correspond-
ent “Data Reader”. Best effort indicates that a message is only sent once, and should 
the transmission fail, the message will be lost.  
In XMPP, the Advanced Message Processing (AMP) (XEP-0079) protocol allows 
publisher and subscriber to define additional delivery semantics for advanced pro-
cessing of XMPP message stanzas, including reliable data transport.  
RabbitMQ uses queues with guaranteed delivery to a single recipient. It uses different 
delivery modes, which specify if the message will need persistence. The messages 
that are indicated as persistent will be protected in case of server reboot by saving 
them in a persistent log file, and sent to each application that associates to the mid-
dleware, even if some time has elapsed from whence the message was published. 
DDS is a clear winner as a basis for smart grids application with respect to this metric. 
Message priority and ordering: message priority is not a subject related to topology 
design; instead, it impacts on the broker decisions on ordering and dropping messag-
es. Publishers assign relative priorities to their messages, to control the broker’s 
queues; subscribers allocate the relative priorities among their subscriptions.  
A set of events can be delivered in different orders [1]: 



i) First In-First Out (FIFO), which is the default temporal message ordering, or 
Last In-First Out (LIFO); 

ii) Random or unordered: if the messages aren’t required to be subject to a giv-
en ordering policy, the ordering is considered to be either unordered or ran-
dom; 

iii) Causal ordering: it guarantees that the same causal relationship between sent 
and received messages are maintained, so that all the messages are delivered 
in the same order that they were produced; 

iv) Total ordering: all messages are delivered in the same order to all subscrib-
ers; 

v) Priority ordering: it is a way of ordering in which the publishers assigns pri-
ority among their messages while publishing them.  

DDS provides QoS policies for both the definition of message transport priority, and 
to control the order of received messages. The transport priority QoS policies allow a 
DDS application to deliver messages with different priorities. The destination order 
QoS policies allow the subscriber to maintain a logical order for the same data in-
stance among changes made by multiple publishers; this is achieved by using 
timestamps when a message is produced. 
In XMPP, Resource Application Priority extension protocol (XEP-0168) specifies 
priority for each connected resource. The protocol defines how the XMPP server as-
signs resources to be prioritized for any given application type. 
RabbitMQ ensures content ordering by exploiting the TCP/IP transport layer, which 
the AMQP is built on. Messages are delivered in the order in which they are sent. For 
prioritizing messages, a publisher can assign a value from 0 to 9 to each message, to 
specify a message priority that will cause the message to be transferred between 
queues before messages having lower priorities. 
DDS has got the advantage of proposing different ways to cope with message priori-
ties and ordering, hence it is the best candidate for smart grids as far as this metric is 
considered. 

5 Conclusions  

Ensuring real-time for bidirectional data flows in the middleware layer is a key re-
quirement for system requiring high scalability, such as smart grids. In this paper, we 
described the main features of different categories of middleware, and identified rea-
sons to prefer Message Oriented Middleware (MOM) over the other categories to 
support smart grid applications. To effectively take advantage of distributed commu-
nication through a MOM, a large-scale data infrastructure must employ a scalable real 
time data middleware. The selection of the most adequate MOM technologies for 
Smart Grid middleware is not a trivial task. The choice depends on the grid require-
ments and the features they need, such as scalability, reliability, flexibility, security 
and real-time data. 
This paper surveys several technologies that support the MOM communication para-
digm. Our analysis led us to the conclusion that XMPP has not been developed in 



order to support real time constraints, since it mostly targets interactive web applica-
tions. The QoS capabilities of XMPP are also limited and are mostly supported by 
extensions to the protocol. DDS targets distributed real-time systems [20] and there-
fore it is capable of addressing very complex distributed applications, where QoS 
requirements have to be guaranteed. AMQP is used for high performance distributed 
system applications, and it is an open cloud messaging platform for real-time on a 
global scale. On the other hand, AMQP’s focus is mostly on high performance and 
not on predictability. It is therefore possible to conclude that DDS is the most suitable 
technology for smart grid application with QoS requirements. 
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